

Ínnía -

Soutenance de thèse de doctorat de l'Université de Lorraine

Détection des anévrismes intracrâniens par apprentissage profond

Présentée et soutenue publiquement le 22 mars 2024

Youssef Assis

Rapporteurs :	Christine Fernandez-Maloigne	Professeure - Université de Poitiers
	Antoine Vacavant	Professeur - Université Clermont Auvergne
Examinatrices :	Carole Lartizien Carole Le Guyader	Directrice de recherche - CNRS Professeure - INSA Rouen Normandie
Encadrants :	René Anxionnat Erwan Kerrien Fabien Pierre	Professeur - Université de Lorraine Chargé de recherche - Inria Maître de conférences - Université de Lorraine

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Plan de	présenta	tion			

- 2 État de l'art en détection d'anévrismes
- 3 Stratégie de gestion de données efficace pour la détection des anévrismes
- Oétection des anévrismes : approche de détection d'objets (DeepAneDet)
- 5 Estimation de la pose des anévrismes (DeepAnePose)

6 Conclusion

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 0000000000	Conclusion
Plan de	présentat	tion			

- 2 État de l'art en détection d'anévrismes
- Stratégie de gestion de données efficace pour la détection des anévrismes
- Ø Détection des anévrismes : approche de détection d'objets (DeepAneDet)
- 5 Estimation de la pose des anévrismes (DeepAnePose)

6 Conclusion

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 0000000000	Conclusion
Context	e et mot	ivations			

Anévrismes intracrâniens

- Dilatations focales des vaisseaux sanguins cérébraux.
- Prévalence : 3 à 6% de la population.
- Taille et forme : 1 à 30 mm, souvent sacculaires.
- Cause : fragilité des parois vasculaires.
- **Risques** : rupture \rightarrow taux élevés de mortalité et morbidité.

Diagnostic des anévrismes : modalités d'imagerie

- X Angiographie numérique soustraite (DSA).
- X Angiographie par tomodensitométrie (CTA).
- ✓ Angiographie par résonance magnétique en temps de vol (TOF-MRA).

Introduction 00●0	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion
Détecti	on des ai	névrismes			
Déte	ction des and	évrismes par experts clini	ques		
•	Analyse des	plans de coupes en 2D.			
	Processus ch	ronophage et difficile ·			

- Risque d'erreurs : omission d'anévrismes et faux positifs.
- Sensibilité de 60 à 88,1%; jusqu'à 35% pour les anévrismes < 3 mm [Okahara et al., 2002].

Figure 1 – Exemple d'image TOF-MRA présentant un anévrisme de 4,83 mm.

Contexte et objectifs de la thèse

Outil automatique d'assistance au diagnostic des anévrismes

Oétection automatisée

- Focalisation sur les anévrismes de moins de 5 mm.
- Taux de faux positifs adapté.

Oliveralization appropriée

• Plan de coupe optimal pour les anévrismes.

Défis liés aux techniques d'apprentissage profond

- Rareté de données : ensembles de données limités et privés.
- Annotation de données : difficile et chronophage.
- Déséquilibre de classes : petite taille et faible fréquence des anévrismes.
- Puissance de calcul : données 3D.

2 État de l'art en détection d'anévrismes

3 Stratégie de gestion de données efficace pour la détection des anévrismes

Oétection des anévrismes : approche de détection d'objets (DeepAneDet)

5 Estimation de la pose des anévrismes (DeepAnePose)

6 Conclusion

Introduction	État de l'art 0●0000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Types d	'approche	25			

- Attribution de probabilités à chaque voxel de l'image.
- $\bullet \ \ \mathsf{Post-traitement}: \mathsf{voxels} \to \mathsf{objets}$
 - Seuillage, extraction, et filtrage de composantes connexes (CC).
- Évaluation : métriques de segmentation (Dice).

- Localisation des anévrismes par boîtes englobantes.
- Configuration complexe :
 - Définition et gestion d'ancres.
 - Plusieurs fonctions de coût.
- Évaluation : métrique de précision moyenne (AP).

Introduction	Etat de l'art 0●0000	Stratégie de gestion de données 0000000000	Détection des anévrismes 000000000	Estimation de la pose des anévrismes 0000000000	Conclusion
Types o	l'approch	es			

- Attribution de probabilités à chaque voxel de l'image.
- $\bullet \ \ \mathsf{Post-traitement} : \mathsf{voxels} \to \mathsf{objets}$
 - Seuillage, extraction, et filtrage de composantes connexes (CC).
- Évaluation : métriques de segmentation (Dice).

- Localisation des anévrismes par boîtes englobantes.
- Configuration complexe :
 - Définition et gestion d'ancres.
 - Plusieurs fonctions de coût.
- Évaluation : métrique de précision moyenne (AP).

0000	Etat de l'art 0●0000	OCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCOOCO	O00000000	Estimation de la pose des anevrismes	000
Types d	'approch	es			

- Attribution de probabilités à chaque voxel de l'image.
- $\bullet \ \ \mathsf{Post-traitement}: \mathsf{voxels} \to \mathsf{objets}$
 - Seuillage, extraction, et filtrage de composantes connexes (CC).
- Évaluation : métriques de segmentation (Dice).

- Localisation des anévrismes par boîtes englobantes.
- Configuration complexe :
 - Définition et gestion d'ancres.
 - Plusieurs fonctions de coût.
- Évaluation : métrique de précision moyenne (AP).

	S	eui	l d	e٤	0	%	
		_		_			
	T.		90	91			
			98	98	98		
		93	95	96	97		
		85	99	97	96		
		82	84	85	80		
			81	92	94		
	ŧ			93			
		+			-		

Introduction	Etat de l'art 0●0000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Types d	l'approch	es			
_					

- Attribution de probabilités à chaque voxel de l'image.
- $\bullet \ \ \mathsf{Post-traitement}: \mathsf{voxels} \to \mathsf{objets}$
 - Seuillage, extraction, et filtrage de composantes connexes (CC).
- Évaluation : métriques de segmentation (Dice).

- Localisation des anévrismes par boîtes englobantes.
- Configuration complexe :
 - Définition et gestion d'ancres.
 - Plusieurs fonctions de coût.
- Évaluation : métrique de précision moyenne (AP).

Introduction	Etat de l'art 0●0000	Stratégie de gestion de données	Détection des anévrismes 000000000	Estimation de la pose des anévrismes 0000000000	Conclusion
Types c	l'approch	es			
_					

- Attribution de probabilités à chaque voxel de l'image.
- $\bullet \ \ \mathsf{Post-traitement}: \mathsf{voxels} \to \mathsf{objets}$
 - Seuillage, extraction, et filtrage de composantes connexes (CC).
- Évaluation : métriques de segmentation (Dice).

- Localisation des anévrismes par boîtes englobantes.
- Configuration complexe :
 - Définition et gestion d'ancres.
 - Plusieurs fonctions de coût.
- Évaluation : métrique de précision moyenne (AP).

Travaux existants - Avant le début de la thèse

Approches en 2D (à partir de 2017)

- Transformation d'images 3D en images 2D.
- Perte d'information anatomique : taux élevé de faux positifs (FP).

Approches en 3D (à partir de 2019)

- Approche par patchs : extraction de sous-volumes d'images.
 - Entraînement : patchs individuels.
 - Inférence : reconstruction par patchs.
- Diversité d'architectures de CNN et de fonctions de coût.

 \rightarrow Difficultés de comparaison : données limitées et privées, variété des métriques.

Travaux existants - Après le début de la thèse Compétition ADAM¹ 2020

Méthodes proposées

État de l'art

00000

- Approches par segmentation d'images : UNet 3D [Çiçek et al., 2016].
- Échantillonnage de données : grands patchs, sélection aléatoire.
- Fonction de coût : entropie croisée binaire (BCE) et Dice.
- Frameworks : nnUNet [Isensee et al., 2021] et nnDetection [Baumgartner et al., 2021].
- Post-traitement : apprentissage ensembliste, filtrage de prédictions.

Évaluation : sensibilité et FP/cas

- Anévrismes représentés par sphères : TP si centre de prédiction est dans la sphère.
- $\bullet\,$ Manque de profondeur d'analyse $\rightarrow\,$ étude par ablation et validation croisée.

^{1.} Aneurysm Detection and Segmentation Challenge (ADAM)

Introduction	État de l'art 0000●0	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Nos cor	ntribution	IS			
Aperçu géné	éral				

Oétection des anévrismes

- Travaux existants : Absence d'approches axées sur les données.
- Notre contribution² : Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Travaux existants : Approches par segmentation avec post-traitement.
 - Notre contribution ³ : Approche de détection d'objets par sphères, sans ancres
- Visualisation des anévrismes
 - Travaux existants : Segmentation inutile en diagnostic.
 - Notre contribution ⁴ : Estimation de la pose d'anévrismes.

^{2.} Assis et al., An efficient data strategy for the detection of brain aneurysms from MRA with deep learning, DALI, 2021.

^{3.} Assis et al., Intracranial Aneurysm Detection : An object detection perspective, IJCARS, 2024

^{4.} Assis et al., Aneurysm Pose Estimation with Deep Learning, MICCAI, 2023, STAR award recipient.

Introduction	État de l'art 0000●0	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Nos cor Aperçu géné	ntribution	S			

Oétection des anévrismes

- Travaux existants : Absence d'approches axées sur les données.
- Notre contribution² : Stratégie de gestion de données adaptée.

Amélioration des performances de détection

- Travaux existants : Approches par segmentation avec post-traitement.
- $\bullet\,$ Notre contribution 3 : Approche de détection d'objets par sphères, sans ancres

Olisualisation des anévrismes

- Travaux existants : Segmentation inutile en diagnostic.
- Notre contribution ⁴ : Estimation de la pose d'anévrismes.

^{2.} Assis et al., An efficient data strategy for the detection of brain aneurysms from MRA with deep learning, DALI, 2021.

^{3.} Assis et al., Intracranial Aneurysm Detection : An object detection perspective, IJCARS, 2024.

^{4.} Assis et al., Aneurysm Pose Estimation with Deep Learning, MICCAI, 2023, STAR award recipient.

Introduction	État de l'art 0000●0	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Nos cor	ntribution	S			
Aperçu géné	èral				

Oétection des anévrismes

- Travaux existants : Absence d'approches axées sur les données.
- Notre contribution² : Stratégie de gestion de données adaptée.

Amélioration des performances de détection

- Travaux existants : Approches par segmentation avec post-traitement.
- Notre contribution ³ : Approche de détection d'objets par sphères, sans ancres

Visualisation des anévrismes

- Travaux existants : Segmentation inutile en diagnostic.
- Notre contribution ⁴ : Estimation de la pose d'anévrismes.

^{2.} Assis et al., An efficient data strategy for the detection of brain aneurysms from MRA with deep learning, DALI, 2021.

^{3.} Assis et al., Intracranial Aneurysm Detection : An object detection perspective, IJCARS, 2024.

^{4.} Assis et al., Aneurysm Pose Estimation with Deep Learning, MICCAI, 2023, STAR award recipient.

Introduction	État de l'art 00000●	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 0000000000	Conclusion
Nos co	ntributior	IS			
Máthadalaa	io cónóralo d'a	nalyce et d'évaluation			

Métriques de détection d'objets

- Anévrismes et prédictions représentés par sphères.
- Métrique de précision moyenne (AP).
- Critère d'intersection sur l'union (IoU), avec seuil de 10%.
- Métriques de sensibilité et FP/cas.

Ø Méthodologie d'évaluation

- Étude par ablation : CHRU de Nancy (132 images, 206 anévrismes).
- Validation croisée à 5 plis : CHUV de Lausanne⁵ (270 images, 164 anévrismes).
- Comparaison avec les méthodes de référence.
- Évaluation par experts cliniques.

^{5.} Di Noto et al., Towards automated brain aneurysm detection in TOF-MRA : open data, weak labels, and anatomical knowledge, 2022

Introduction	État de l'art 000000	Stratégie de gestion de données •000000000	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Plan de	présentat	tion			

2 État de l'art en détection d'anévrismes

3 Stratégie de gestion de données efficace pour la détection des anévrismes

- Ø Détection des anévrismes : approche de détection d'objets (DeepAneDet)
- 5 Estimation de la pose des anévrismes (DeepAnePose)

6 Conclusion

Introduction	État de l'art	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anév
0000	000000	000000000		0000000000

Stratégie de gestion de données efficace

Méthode proposée : Focalisation sur les données

Rareté de données

- Annotation de données rapide.
- Approche par petits patchs.

On Nombre, diversité et indépendance des données en entrée

- Sélection guidée de patchs négatifs (sans anévrisme).
- Synthèse de patchs positifs (avec anévrisme).

Conclusion

rismes

- Sphères : collet (P1) et dôme (P2).
- 4 fois plus rapide que l'annotation par voxel [Di Noto et al., 2022].

Figure 2 – Approximation du volume de l'anévrisme par une sphère.

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion		
Approc	he par pe	etits patchs					
Petit	s patchs et r	ion superposés					
٠	• Patchs isotropes de 48 \times 48 \times 48 voxels \rightarrow moins de ressources de calcul.						
٠	• Multiples patchs par image \rightarrow ensemble d'entraînement large.						

• Patchs non superposés \rightarrow indépendants \rightarrow variété de l'entraînement.

Figure 3 – Rendu du volume d'une image TOF-MRA avec un anévrisme de 4,08 mm (rouge).

- Sélection guidée de patchs négatifs (sans anévrisme)
 - 200 patchs sélectionnés par image, moitié sur les vaisseaux.
- Synthèse de patchs positifs (avec anévrisme)
 - Duplication 50 fois avec déformations aléatoires (0 à 3 mm) pour diversité de forme.

Figure 4 – Diverses formes d'anévrismes générés à partir d'un anévrisme de 2,92 mm.

• Augmentation de données

• Translations (0 - 10 mm) et rotations (0 - 180°) aléatoires.

- Réseau UNet 3D standard, BCE comme fonction de coût.
- Configuration simple : 100 époques et taux d'apprentissage fixe.

Figure 5 – Architecture du réseau UNet 3D.

Introduction	État de l'art 000000	Stratégie de gestion de données 0000000000	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion
Métriau	ies d'éval	luation			

Extraction de composantes connexes (CC)

- Seuillage à 1% pour éliminer le bruit.
- Sans filtrage de CC.
- ${\scriptstyle \bullet \ }$ CC \rightarrow sphères :
 - Centre : centre de gravité de la CC.
 - Diamètre : distance maximale entre voxels de la CC.
 - Score de confiance : valeur maximale prédite dans la CC.

Calcul des métriques d'évaluation

- Vrai positif (TP) si loU $^6\geq$ 10%, sinon faux négatif (FN).
- Faux positif (FP) si loU < 10%.
- Un seul TP par annotation, FP sinon (max IoU).

^{1.} Intersection sur l'union (IoU)

État de l'art

Validation croisée à 5 plis - CHRU de Nancy

- Répartition des données : 4 plis d'entraînement et 1 pli de test.
 - Écarts-types calculés à partir des résultats sur les 5 plis de test.
- Comparaison avec le Framework nnUNet
 - Grands patchs, une variante du réseau UNet 3D.
 - Post-traitement : apprentissage ensembliste et filtrage des CC par taille.

Méthodes	Précision moyenne (%)	Sensibilité (%)	FP/cas
Notre méthode		$69,76\pm5,41$	
nnUNet	$65,81~\pm~4,40$	$72,10\pm4,13$	$0,42\pm0,10$

Table 1 – Validation croisée à 5 plis sur l'ensemble de données du CHRU de Nancy.

État de l'art

Validation croisée à 5 plis - CHRU de Nancy

- Répartition des données : 4 plis d'entraînement et 1 pli de test.
 - Écarts-types calculés à partir des résultats sur les 5 plis de test.
- Comparaison avec le Framework nnUNet
 - Grands patchs, une variante du réseau UNet 3D.
 - Post-traitement : apprentissage ensembliste et filtrage des CC par taille.

Méthodes	Précision moyenne (%)	Sensibilité (%)	FP/cas
Notre méthode	$62,10\pm5,80$	69,76 \pm 5,41	$0,63\pm0,27$
nnUNet	$65,81\pm4,40$	72,10 \pm 4,13	$0,42\pm0,10$

Table 1 – Validation croisée à 5 plis sur l'ensemble de données du CHRU de Nancy.

Stratégie de gestion de données 0000000000

Détection des anévrismes

Estimation de la pose des anévrismes

Conclusion

Résultats visuels et discussion

État de l'art

(b) $FP \rightarrow TP$

Figure 6 - (a) Ramification des petites artères confondue avec anévrisme. (b) Anévrisme omis lors de l'annotation initiale.

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion
Résultat	ts visuels	et discussion			

Évaluation par experts - Données du CHRU Nancy

- Évaluation par deux experts : 14 et 32 ans d'expérience.
- Visualisation des détections et anévrismes non détectés.
- Mise à jour des annotations : 18 anévrismes ajoutés, 2 retirés.
- Annotateur : sensibilité de 89,47% avec 0,018 FP/cas.

Limitations des approches par segmentation d'images

- Dépendance à la qualité de segmentation et au post-traitement.
- Impact négatif sur la détection d'anévrismes de petite taille (quelques voxels).
- Sensibilité par taille : < 3mm à 51,66% ; 3 5mm à 89,39% ; > 5mm à 89,65%.

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion
Résultat	s visuels	et discussion			

Évaluation par experts - Données du CHRU Nancy

- Évaluation par deux experts : 14 et 32 ans d'expérience.
- Visualisation des détections et anévrismes non détectés.
- Mise à jour des annotations : 18 anévrismes ajoutés, 2 retirés.
- Annotateur : sensibilité de 89,47% avec 0,018 FP/cas.

Limitations des approches par segmentation d'images

- Dépendance à la qualité de segmentation et au post-traitement.
- Impact négatif sur la détection d'anévrismes de petite taille (quelques voxels).
- Sensibilité par taille : < 3mm à 51,66% ; 3 5mm à 89,39% ; > 5mm à 89,65%.

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes •00000000	Estimation de la pose des anévrismes 0000000000	Conclusion
Plan de	présenta	tion			

- 2 État de l'art en détection d'anévrismes
- Stratégie de gestion de données efficace pour la détection des anévrismes

Oétection des anévrismes : approche de détection d'objets (DeepAneDet)

5 Estimation de la pose des anévrismes (DeepAnePose)

6 Conclusion

Méthode proposée

- Localisation directe des anévrismes sans nécessiter de post-traitement.
- Détection sans ancres
 - Moins d'hyperparamètres.
- Détection par sphères
 - Localisation plus précise.
 - Applicable en pratique clinique : calcul de la taille.

Réseau de détection : sans ancres et par sphères

- Sphère : centre (C_x, C_y, C_z) , rayon (r), score de confiance.
- Patch de $96 \times 96 \times 96$ divisé en $12 \times 12 \times 12 = 1728$ cellules.
- Une cellule prédit un anévrisme si son centre est à l'intérieur.

Figure 7 – Réseau proposé pour la détection d'anévrismes par sphères.

Conclusion

Introduction État de l'art Stratégie de gestion de données Détection des anévrismes Estimation de la pose des anévrismes Conclusion Fonction de coût : déséquilibre de classes

- Grand déséquilibre entre cellules positives (P) et négatives (N).
- Fonction de coût pondérée :

Coût total = Classification + Régression(1)Classification
$$(P, N) = BCE(P) + 0.5 \times \#P \times BCE(N)$$
(2)

$$\mathsf{Régression} (P) = 5 \times \sum_{i=1}^{\#P} \mathsf{MSE}(C_{xi}, C_{yi}, C_{zi}, r_i)$$
 (3)

avec #P: nombre de cellules positives dans le lot d'entraînement.

Figure 8 – Patch de 96³ : seulement 1 sur 1728 cellules est positive ($\approx 0,057\%$).

. Entropie croisée binaire (BCE)

. Erreur quadratique moyenne (MSE)

Approche par petits patchs : $96 \times 96 \times 96$ voxels

• Amélioration de l'équilibre sensibilité/faux positifs.

Échantillonnage et génération de données

- Patchs non superposés : 40 patchs négatifs par image.
- 50 duplications et déformation de patchs positifs.

Gestion des patchs durant l'entraînement

• Patchs d'entraînement = 75% positifs + 15% négatifs (sélection aléatoire par époque).

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Méthode	es de réfé	erence			

- nnUNet [Isensee et al., 2021] : Segmentation d'images.
- nnDetection [Baumgartner et al., 2021] : Détection d'objets avec boîtes, 27 ancres.

Figure 9 - Conversion de prédictions de nnUNet (gauche) et nnDetection (droite) en sphères.

Validation croisée à 5 plis - CHUV Lausanne

Annotations initiales

- Separtition de données : 4 plis d'entraînement, 1 pli de test.
- S modèles par méthode : DeepAneDet, nnDetection, nnUNet.
- O Analyse visuelle des prédictions : de nombreux faux positifs sont de vrais positifs.

Évaluation clinique - Données du CHUV Lausanne

- Révision indépendante par deux experts : 14 et 32 ans d'expérience.
- Pour chaque méthode : évaluation des prédictions et ajout des anévrismes.
- Consensus dans 7,6% de cas (désaccords).
- Mise à jour des annotations : 23 anévrismes ajoutés, 13 retirés (de 164 à 174 anévrismes).
- Annotateur : sensibilité de 82,7% avec 0,07 FP/cas.

Validation croisée à 5 plis - CHUV Lausanne

Annotations initiales

- Separtition de données : 4 plis d'entraînement, 1 pli de test.
- S modèles par méthode : DeepAneDet, nnDetection, nnUNet.
- O Analyse visuelle des prédictions : de nombreux faux positifs sont de vrais positifs.

Évaluation clinique - Données du CHUV Lausanne

- Révision indépendante par deux experts : 14 et 32 ans d'expérience.
- Pour chaque méthode : évaluation des prédictions et ajout des anévrismes.
- Consensus dans 7,6% de cas (désaccords).
- Mise à jour des annotations : 23 anévrismes ajoutés, 13 retirés (de 164 à 174 anévrismes).
- Annotateur : sensibilité de 82,7% avec 0,07 FP/cas.

Conclusion

- Performance améliorée : capacité à apprendre avec des données bruitées.
- Sensibilité supérieure à celle de l'annotateur.
- Sensibilité par taille : < 3mm à 77,21%, 3 5mm à 98,59%, > 5mm à 83,33%.

Méthodes	Précision moyenne (%)	Sensibilité (%)	FP/case
DeepAneDet	$78,96 \pm 5,24$	$86,78\pm3,98$	$0,53\pm0,14$
nnDetection	78,01 \pm 6,07	86,78 \pm 6,16	$0,63\pm0,10$
nnUNet	73,47 \pm 4,17	71,26 \pm 8,09	$0,11\pm0,04$

Table 2 – Méthodes entraînées sur annotations initiales et évaluées par experts.

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion
Résultat	s visuelle	S			

Figure 10 - (a, b) Petits anévrismes détectés par notre méthode (taille : 1,90 et 1,65 mm). (c) Cas de faux positifs. (d) Anévrisme de 1,91 mm non détecté.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes •000000000	Conclusion
Plan de	présenta	tion			

- 2 État de l'art en détection d'anévrismes
- Stratégie de gestion de données efficace pour la détection des anévrismes
- Ø Détection des anévrismes : approche de détection d'objets (DeepAneDet)
- 5 Estimation de la pose des anévrismes (DeepAnePose)

6 Conclusion

Stratégie de gestion de données

Estimation de la pose des anévrismes (DeepAnePose)

Méthode proposée : coupes reformatées pour une meilleure analyse

• Pratique clinique

État de l'art

- Analyse à travers les plans de coupes canoniques.
- Évaluation limitée : forme, taille, vaisseaux voisins.
- Coupes reformatées : localisation et orientation (pose) d'anévrismes.

Stratégie de gestion de données

Détection des anévrismes

Estimation de la pose des anévrismes

Conclusion

Annotation et préparation de données

Pose des anévrismes : approche par points de repère

- Centre $C = (C_x, C_y, C_z) = (P1 + P2)/2$: Localisation.
- Vecteur $\vec{v} = (v_x, v_y, v_z) = P2 C$: Taille $|\vec{v}|$ et orientation $\vec{v}/|\vec{v}|$.
- Chaque plan de coupe reformaté est déterminé en tournant autour du vecteur \vec{v} .

- Pose d'anévrisme : centre (C_x, C_y, C_z) , vecteur d'axe (\vec{v}) , score de confiance.
- Patchs $96 \times 96 \times 96$ divisé en $12 \times 12 \times 12 = 1728$ cellules ($8 \times 8 \times 8$ chacune).
- Une cellule prédit un anévrisme si son centre est à l'intérieur.

Figure 12 – Réseau proposée pour l'estimation de la pose des anévrismes.

- - Grand déséquilibre entre cellules positives (P) et négatives (N).
 - Fonction de coût pondérée :

 $Co\hat{u}t total = Classification + Régression + Orientation$ (4)

Classification
$$(P, N) = BCE(P) + 0.5 \times \#P \times BCE(N)$$
 (5)

Régression (P) =
$$5 \times \sum_{i=1}^{\#P} MSE(C_{xi}, C_{yi}, C_{zi}, v_{xi}, v_{yi}, v_{zi})$$
 (6)

Orientation (P) =
$$5 \times \sum_{i=1}^{\#P} (1 - \text{Similarité Cosinus}(\vec{v_i}))$$
 (7)

avec #P : nombre de cellules positives dans le lot d'entraînement.

[.] Entropie croisée binaire (BCE)

[.] Erreur quadratique moyenne (MSE)

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion
Métriqu	es d'évalı	uation			

O Détection des anévrismes

- Seuil IoU de 10% entre sphères.
- Comparée à DeepAneDet, nnDetection et nnUNet.
- Stimation de la pose d'anévrismes
 - Basée sur les anévrismes correctement détectés (sensibilité @ 50%).
 - Localisation (mm) : distance euclidienne entre les centres C.
 - Orientation (*) : erreur angulaire entre les vecteurs d'axe \vec{v} .

Stratégie de gestion de données

Détection des anévrismes

Estimation de la pose des anévrismes

Conclusion

Validation croisée à 5 plis - CHUV de Lausanne

Détection des anévrismes

Méthodes	Précision moyenne (%)	Sensibilité (%)	FP/case
DeepAnePose	$78,51\pm3,61$	$83,91\pm4,77$	$0,40\pm0,04$
DeepAneDet	78,96 \pm 5,24	86,78 \pm 3,98	$0,53\pm0,14$
nnDetection	$\textbf{78,01} \pm \textbf{6,07}$	86,78 \pm 6,16	$0,63\pm0,10$
nnUNet	73,47 \pm 4,17	71,26 \pm 8,09	$0,11\pm0,04$

Table 3 – Méthodes entraînées sur annotations initiales et évaluées sur annotations révisées.

- Performances compétitives face aux méthodes spécialisées en détection.
- Faibles écarts-types indiquant la robustesse de la méthode.

Stratégie de gestion de données

Détection des anévrismes

Estimation de la pose des anévrismes

Conclusion

Validation croisée à 5 plis - CHUV de Lausanne

Estimation de la pose des anévrismes

Máthadas	Erreur de l	ocalisation (mm)	Erreur d'orientation (°)	
Methodes	Médiane	Min-Max	Médiane	Min-Max
DeepAnePose	0,45	0,05 - 1,40	11,36	1,05 - 68,30
DeepAneDet	0,56	0,11-2,41	_	—

Table 4 - Méthodes entraînées sur annotations initiales et évaluées sur annotations révisées.

- Faible erreur de localisation, comparable à la taille des voxels IRM (0,4 à 0,7 mm³).
- Estimation d'orientation adaptée, erreurs élevées pour les anévrismes de formes complexes.

Stratégie de gestion de données

Détection des anévrismes

Estimation de la pose des anévrismes

Conclusion

Résultats visuels

État de l'art

(a) Anévrisme de 1,97 mm Erreur : 0,82mm/8,2°

(b) Anévrisme de 7,69 mm Erreur : 0,72mm/10,62°

(c) Anévrisme de 3,52 mm Erreur : 0,70mm/41,54°

Figure 13 – Points d'annotation (vert) et de prédiction (bleu). Chaque plan de coupe reformaté a été déterminé en tournant autour de l'axe de l'anévrisme passant par les points prédits.

Introduction 0000	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes 000000000	Conclusion

Résultats visuels

Importance d'une définition clinique de la notion d'orientation d'anévrismes

Figure 14 – Difficulté à déterminer l'orientation des anévrismes présentant une forme complexe. Sim&Cure C

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion ●00
Plan de	présentat	ion			

- 2 État de l'art en détection d'anévrismes
- Stratégie de gestion de données efficace pour la détection des anévrismes
- Ø Détection des anévrismes : approche de détection d'objets (DeepAneDet)
- 5 Estimation de la pose des anévrismes (DeepAnePose)

Otection des anévrismes est difficile pour les experts (sensibilité : 82,7%).

- Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Sensibilité supérieure à celle des experts malgré le bruit d'annotation.
 - Amélioration de la détection des petits anévrismes (< 5 mm).
- Stimation de la pose des anévrismes, démontrant une utilité clinique
- Méthodologie : métriques, études par ablation, validation croisée et évaluation clinique.
- Modèles et outils 3D Slicer disponibles sur : https://gitlab.inria.fr/yassis.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Résumé	des cont	ributions			

- Otection des anévrismes est difficile pour les experts (sensibilité : 82,7%).
- Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Sensibilité supérieure à celle des experts malgré le bruit d'annotation.
 - Amélioration de la détection des petits anévrismes (< 5 mm).
- O Estimation de la pose des anévrismes, démontrant une utilité clinique
- Méthodologie : métriques, études par ablation, validation croisée et évaluation clinique.
- Modèles et outils 3D Slicer disponibles sur : https://gitlab.inria.fr/yassis.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion ○●○
Résumé	des cont	ributions			

- Otection des anévrismes est difficile pour les experts (sensibilité : 82,7%).
- Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Sensibilité supérieure à celle des experts malgré le bruit d'annotation.
 - Amélioration de la détection des petits anévrismes (< 5 mm).
- Istimation de la pose des anévrismes, démontrant une utilité clinique
- Méthodologie : métriques, études par ablation, validation croisée et évaluation clinique.
- Modèles et outils 3D Slicer disponibles sur : https://gitlab.inria.fr/yassis.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion ○●○
Résumé	des cont	ributions			

- Otection des anévrismes est difficile pour les experts (sensibilité : 82,7%).
- Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Sensibilité supérieure à celle des experts malgré le bruit d'annotation.
 - Amélioration de la détection des petits anévrismes (< 5 mm).
- Stimation de la pose des anévrismes, démontrant une utilité clinique
- Méthodologie : métriques, études par ablation, validation croisée et évaluation clinique.
- Modèles et outils 3D Slicer disponibles sur : https://gitlab.inria.fr/yassis.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion ○●○
Résumé	des cont	ributions			

- Otection des anévrismes est difficile pour les experts (sensibilité : 82,7%).
- Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Sensibilité supérieure à celle des experts malgré le bruit d'annotation.
 - Amélioration de la détection des petits anévrismes (< 5 mm).
- Stimation de la pose des anévrismes, démontrant une utilité clinique
- 9 Méthodologie : métriques, études par ablation, validation croisée et évaluation clinique.
- Modèles et outils 3D Slicer disponibles sur : https://gitlab.inria.fr/yassis.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion ○●○
Résumé	des cont	ributions			

- Otection des anévrismes est difficile pour les experts (sensibilité : 82,7%).
- Stratégie de gestion de données adaptée.
- Amélioration des performances de détection
 - Sensibilité supérieure à celle des experts malgré le bruit d'annotation.
 - Amélioration de la détection des petits anévrismes (< 5 mm).
- Stimation de la pose des anévrismes, démontrant une utilité clinique
- Méthodologie : métriques, études par ablation, validation croisée et évaluation clinique.
- O Modèles et outils 3D Slicer disponibles sur : https://gitlab.inria.fr/yassis.

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion 00●
Perspec	tives futı	ires			

Extension et amélioration des ensembles de données

- Améliorer la fiabilité : annotation par plusieurs experts.
- Faciliter l'annotation : notre approche d'annotation, SAM⁷.

annotations multiples : modélisation de variabilité d'annotation par réseaux de neurones.

Sareté des anévrismes : synthèse à partir de vaisseaux sains.

Évaluation du risque de rupture

- Mesures : taille, angle d'écoulement, connexion avec vaisseau parent.
- Modalités thérapeutiques : 3DRA⁸.

8. Angiographie rotationnelle tridimensionnelle (3DRA)

^{7.} Segment Anything Model (SAM)

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Perspect	tives futu	ires			

Extension et amélioration des ensembles de données

- Améliorer la fiabilité : annotation par plusieurs experts.
- Faciliter l'annotation : notre approche d'annotation, SAM⁷.

Onnotations multiples : modélisation de variabilité d'annotation par réseaux de neurones.

8 Rareté des anévrismes : synthèse à partir de vaisseaux sains.

évaluation du risque de rupture

- Mesures : taille, angle d'écoulement, connexion avec vaisseau parent.
- Modalités thérapeutiques : 3DRA⁸.

8. Angiographie rotationnelle tridimensionnelle (3DRA)

^{7.} Segment Anything Model (SAM)

Introduction	État de l'art 000000	Stratégie de gestion de données	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion ○○●
Perspec	tives futu	ires			

- Extension et amélioration des ensembles de données
 - Améliorer la fiabilité : annotation par plusieurs experts.
 - Faciliter l'annotation : notre approche d'annotation, SAM⁷.
- Onnotations multiples : modélisation de variabilité d'annotation par réseaux de neurones.
- Sareté des anévrismes : synthèse à partir de vaisseaux sains.
- évaluation du risque de rupture
 - Mesures : taille, angle d'écoulement, connexion avec vaisseau parent.
 - Modalités thérapeutiques : 3DRA⁸.

8. Angiographie rotationnelle tridimensionnelle (3DRA)

^{7.} Segment Anything Model (SAM)

Introduction	État de l'art 000000	Stratégie de gestion de données 0000000000	Détection des anévrismes	Estimation de la pose des anévrismes	Conclusion
Perspect	tives futu	ires			

- Extension et amélioration des ensembles de données
 - Améliorer la fiabilité : annotation par plusieurs experts.
 - Faciliter l'annotation : notre approche d'annotation, SAM⁷.
- Onnotations multiples : modélisation de variabilité d'annotation par réseaux de neurones.
- Sareté des anévrismes : synthèse à partir de vaisseaux sains.
- Évaluation du risque de rupture
 - Mesures : taille, angle d'écoulement, connexion avec vaisseau parent.
 - Modalités thérapeutiques : 3DRA⁸.

^{7.} Segment Anything Model (SAM)

^{8.} Angiographie rotationnelle tridimensionnelle (3DRA)

Publications et communications

Youssef Assis, Liang Liao, Fabien Pierre, René Anxionnat, and Erwan Kerrien An efficient data strategy for the detection of brain aneurysms from MRA with deep learning Deep Generative Models, and Data Augmentation, Labelling, and Imperfections (DALI@MICCAI), 2021.
Youssef Assis, Liang Liao, Fabien Pierre, René Anxionnat, and Erwan Kerrien An efficient data strategy for the detection of brain aneurysms from MRA with deep learning 18ème journées francophones des jeunes chercheurs en vision par ordinateur (ORASIS), 2021.
Liang Liao, Youssef Assis, Fabien Pierre, René Anxionnat, and Erwan Kerrien Une stratégie efficace de préparation des données pour la détection des anévrismes cérébraux en IRM 3D-TOF par deep learning <i>Société Française de Neuroradiologie (SFNR)</i> , 2022.
Youssef Assis, Liang Liao, Fabien Pierre, René Anxionnat, and Erwan Kerrien Intracranial Aneurysm Detection using Spherical Representation Colloque Français d'Intelligence Artificielle en Imagerie Biomédicale (IABM), 2023.
Youssef Assis, Liang Liao, Fabien Pierre, René Anxionnat, and Erwan Kerrien Aneurysm Pose Estimation with Deep Learning Medical Image Computing and Computer Assisted Intervention (MICCAI), 2023.
Youssef Assis, Liang Liao, Fabien Pierre, René Anxionnat, and Erwan Kerrien Intracranial Aneurysm Detection : An object detection perspective International Journal of Computer Assisted Radiology and Surgery (IJCARS), 2024.