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Challenging clinical problem:

o Intracranial aneurysms:
- Abnormal focal dilation of cerebral blood vessels.
- Very small structures (1-30mm), mostly ball-shaped.

o Detection and evaluation from TOF-MRA data:

- Navigating through different 2D cut planes: manual and time-consuming task.

Objective: Automated detection and appropriate visualization
o Reformatted Plane for better understanding.
o Analyse connection to parent vessel.

3D TOE-MRA ] ] Aneurysm Localization
Image Pose Estimation +
Orientation Estimation

DSA: Digital Subtraction Angiography.
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Introduction

Challenges:

- Data Scarcity:
- Limited and private datasets.

 Class Imbalance:

- Aneurysms are rare (0 to 4/patient)
- Small structures in MRA data (=10/1M voxels).

« Data Annotation:

- Difficult and time-consuming expert labelling.
- How to label aneurysm orientation?
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Our proposed method

Efficient Data Strategy

1. Data annotation:
« Simple and fast annotation: Sphere defined by two points (P1, P2). N/
» Approximately 4 times faster than the voxel-wise annotation [2]. ek gt

Centerg':

2. Small non-intersecting patches:
» Small patches of 96x96x96 voxels (38.4x38.4x38.4 mm): larger training samples.

* Non-Intersecting patches: Reliable background modeling.

3. Data sampling and generation:

y® Negative patches: aneurysm-free
o Selecting 40 candidate patches per patient.
o Mostly centered on blood vessels.

e Positive patches: with aneurysm
o Centered on aneurysms, duplicated 50 times.
o Apply random deformable distortion for varied shapes.
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Some instances generated for the aneurysm.

TOF-MRA image with one aneurysm.

[2] Di Noto et al. Towards automated brain aneurysm detection in TOF-MRA: open data, weak labels, and anatomical knowledge, Neuroinformatics, 2022.
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N Our proposed method

Deep learning architecture

e End-to-end 3D CNN: Inspired by the 2D YOLO [3].
e Adapted for both pose estimation and object detection tasks:
o For Pose Estimation:
m Localization: Center coordinates C = (Cx, Cy, Cz) = (P1+P2)/2.
m Orientation: Size and Orientation v = (Vx, Vy, Vz) = P2-C.

o For Object Detection:
m Spheres: Center C and radius |v|.

— High class imbalance
,,,,,,,, Localization and Orientation Head Positive (P) and Negative (N)
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Our proposed pose estimation and object detection architecture.



- Our proposed method

Implementation details

e Training:
- 200 epochs.
- Learning rate = 102,
- Batch size = 32.
- Balanced batch sampling: Random selection
Batch = 4 negative patches + 28 positive patches
- Inference:
- Split into 96x96x96 patches with an isotropic voxel resolution of 0.4mm.
- Overlapping patches: 16 voxels.
- Non maximum suppression (Spheres, loU = 10%).

BCE: Binary Cross Entropy.

MSE: Mean Squared Error.
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Datasets: 402 subjects

Evaluation study

5-Fold cross validation

TOF-MRA # Subjects | # Aneurysms | Mean size (mm)
In-house 132 206 3.97 232
CHUV [2] (public) 270 164 3.74+2.17

Aneurysm Pose Estimation: No existing SOTA to compare with.

Center Localization (mm)

Orientation (°)

Aneurysm detection: Spheres (loU > 10%).

Median Range Median Range
In-house 0.49 0.05-1.74 11.91 0.21 - 68.35
CHUV [2] 0.48 0.05-1.43 12.27 1.05 - 68.30
Dataset: CHUV [2] | Average Precision (%) | Sensitivity (%) FP/case
nnDetection [4] 73.68 + 6.38 84.76 £ 4.72 0.67 £0.12
nnUNet [5] 72.46 £+ 4.74 71.95+9.11 0.13 £ 0.06
Ours 76.60 + 5.24 82.93+592 | 0.44+0.04

[4] Baumgartner et al. nnDetection: a self-configuring method for medical object detection. MICCAI, 2021
[5] Isensee et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 2021.
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Evaluation study

nnUNet and nnDetection : Fully automated methods

e Image Segmentation: nnUNet [4] "ﬂ ---------------------------- - "\‘;'
- Based on UNet architecture. P J—=
- Patch size: 224 x 256 x 56 voxels. “—];‘:‘;1;; """""""""" - Ilt_lt.
- Loss function: CE + BCE. BN ~HHl L g
- Deep supervision. el ey
ity | o oo sponn | 21055102510 5%,
spxizpezxizy Featremapsze = Convolution Transposed input Deep supervision loss
e Object Detection: nnDetection [5] p-. &

— cl
- Based on RetinaUNet [6] architecture. a—— c‘; B—[ %
- Patch size: 256 x 256 x 56 voxels. = bb
- Detection Loss : BCE + Generalized loU.

- Segmentation Loss: Dice + BCE. / ? /4:1

u Feature Pyramid Network Semantic Seg. Features ¢l Classification

Coarse Features for Detection 4- Semantic Seg. Signals bb Box-Regression

[4] Baumgartner et al. nnDetection: a self-configuring method for medical object detection. MICCAI, 2021

[5] Isensee et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 2021.
[6] Jaeger, Paul F Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection, Machine Learning for Health Workshop, 2020.
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Qualitative results

GT annotation (P1, P2) vs Predictions (Pred1, Pred2) =C = v

(1) Detection of a very small 1.97mm (2) Spherical-shaped 7.69mm (3) Large orientation error of 41.54° for (4) Detection of unlabeled aneurysm of
aneurysm (Error: 0.82 mm; 8.20°). aneurysm (Error: 0.72mm ,10.62°). a complex-shaped 3.52 mm aneurysm. 3.50mm (expert sensitivity <100%).
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Conclusion

Conclusion
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The pose estimation architecture has shown promising results.

Can also be applied to classical object detection tasks.

Orientation errors are primarily due to annotation uncertainty for small and complex-
shaped aneurysms.

Perspectives

©)
©)

Develop a clinical definition for aneurysm orientation.
Conduct evaluations in clinical settings.

Code and annotations are publicly available at https://gitlab.inria.fr/yassis/DeepAnePose.

Intracranial Aneurysm Pose Estimation with Deep Learning

10


https://gitlab.inria.fr/yassis/DeepAnePose

