

Intracranial Aneurysm Pose Estimation with Deep Learning

Youssef Assis¹, Liang Liao^{1,2,3}, Fabien Pierre¹, René Anxionnat^{2,3}, Erwan Kerrien¹

¹ Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.

² Université de Lorraine, CHRU-Nancy, Dept. of Diagnostic and Therapeutic Interventional Neuroradiology, Nancy, France.

³ Université de Lorraine, Inserm, IADI, F-54000 Nancy, France.

Introduction

Challenging clinical problem:

- Intracranial aneurysms:
 - Abnormal focal dilation of cerebral blood vessels.
 - Very small structures (1-30mm), mostly ball-shaped.
- Detection and evaluation from TOF-MRA data:
 - Navigating through different 2D cut planes: manual and time-consuming task.

Objective: Automated detection and appropriate visualization

- Reformatted Plane for better understanding.
- Analyse connection to parent vessel.

DSA: Digital Subtraction Angiography.

Introduction

Challenges:

MICHAR

- Data Scarcity:
 - Limited and private datasets.
- Class Imbalance:
 - Aneurysms are rare (0 to 4/patient)
 - Small structures in MRA data (≈10/1M voxels).

• Data Annotation:

- Difficult and time-consuming expert labelling.
- How to label aneurysm orientation?

Our proposed method

Efficient Data Strategy

1. Data annotation:

- Simple and fast annotation: Sphere defined by two points (P1, P2).
- Approximately 4 times faster than the voxel-wise annotation [2].
- 2. Small non-intersecting patches:
 - Small patches of 96x96x96 voxels (38.4x38.4x38.4 mm): larger training samples.
 - Non-Intersecting patches: Reliable background modeling.
- 3. Data sampling and generation:

TOF-MRA image with one aneurysm.

Negative patches: aneurysm-free

- Selecting 40 candidate patches per patient.
- Mostly centered on blood vessels.

Positive patches: with aneurysm

- Centered on aneurysms, duplicated 50 times.
- Apply random deformable distortion for varied shapes.

Some instances generated for the aneurysm.

Our proposed method

Deep learning architecture

- End-to-end 3D CNN: Inspired by the 2D YOLO [3].
- Adapted for both pose estimation and object detection tasks:
 - For Pose Estimation: \cap
 - **Localization**: Center coordinates C = (Cx, Cy, Cz) = (P1+P2)/2.
 - **Orientation**: Size and Orientation $\vec{v} = (Vx, Vy, Vz) = P2-C$.
 - For Object Detection: Ο
 - **Spheres:** Center C and radius $|\vec{v}|$.

Our proposed pose estimation and object detection architecture.

Dome P2

Center

Neck

```
Loss function
BCE (P) + 0.5 x #P x BCE (N)
5 x MSE(Cx,Cy,Cz, Vx,Vy,Vz)
 5 x (1 - Cosine similarity(\vec{v}))
```

[3] Redmon et al. Yolov3: An incremental improvement, arxiv preprint, 2018.

of 8x8x8 voxels each

Our proposed method

Implementation details

• Training:

- 200 epochs.
- Learning rate = 10^{-2} .
- Batch size = 32.
- Balanced batch sampling: Random selection
 - Batch = 4 negative patches + 28 positive patches

• Inference:

- Split into 96x96x96 patches with an isotropic voxel resolution of 0.4mm.
- Overlapping patches: 16 voxels.
- Non maximum suppression (Spheres, IoU = 10%).

Evaluation study

5-Fold cross validation

• **Datasets:** 402 subjects

TOF-MRA	# Subjects	# Aneurysms	Mean size (mm)
In-house	132	206	3.97 ± 2.32
CHUV [2] (public)	270	164	3.74 ± 2.17

• Aneurysm Pose Estimation: No existing SOTA to compare with.

	Center Localization (mm)		Orientation (°)	
	Median	Range	Median	Range
In-house CHUV [2]	0.49 0.48	0.05 - 1.74 0.05 - 1.43	11.91 12.27	0.21 - 68.35 1.05 - 68.30

• Aneurysm detection: Spheres (IoU > 10%).

Dataset: CHUV [2]	Average Precision (%)	Sensitivity (%)	FP/case
nnDetection [4] nnUNet [5]	73.68 ± 6.38 72.46 ± 4.74	84.76 ± 4.72 71.95 ± 9.11	0.67 ± 0.12 0.13 ± 0.06
Ours	76.60 ± 5.24	82.93 ± 5.92	0.44 ± 0.04

[4] Baumgartner et al. nnDetection: a self-configuring method for medical object detection. MICCAI, 2021

[5] Isensee et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 2021.

Evaluation study

nnUNet and nnDetection : Fully automated methods

- Image Segmentation: nnUNet [4]
 - Based on UNet architecture.
 - Patch size: 224 x 256 x 56 voxels.
 - Loss function: CE + BCE.
 - Deep supervision.

- **Object Detection:** nnDetection [5]
 - Based on RetinaUNet [6] architecture.
 - Patch size: 256 x 256 x 56 voxels.
 - Detection Loss : BCE + Generalized IoU.
 - Segmentation Loss: Dice + BCE.

[4] Baumgartner et al. nnDetection: a self-configuring method for medical object detection. MICCAI, 2021

[5] Isensee et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 2021.

[6] Jaeger, Paul F Retina U-Net: Embarrassingly simple exploitation of segmentation supervision for medical object detection, Machine Learning for Health Workshop, 2020.

Qualitative results

GT annotation (P1, P2) **vs** Predictions (Pred1, Pred2) = C $\pm \vec{v}$

(1) Detection of a very small 1.97mm aneurysm (Error: 0.82 mm; 8.20°).

(2) Spherical-shaped 7.69mm aneurysm (Error: 0.72mm ,10.62°).

(3) Large orientation error of 41.54° for a complex-shaped 3.52 mm aneurysm.

(4) Detection of unlabeled aneurysm of 3.50mm (expert sensitivity <100%).

Conclusion

• Conclusion

- The pose estimation architecture has shown promising results.
- Can also be applied to classical object detection tasks.
- Orientation errors are primarily due to annotation uncertainty for small and complexshaped aneurysms.

• Perspectives

- Develop a clinical definition for aneurysm orientation.
- Conduct evaluations in clinical settings.
- Code and annotations are publicly available at https://gitlab.inria.fr/yassis/DeepAnePose.