Aneurysm Pose Estimation with Deep Learning

Oria

Youssef Assis¹, Liang Liao^{1,2,3}, Fabien Pierre¹, René Anxionnat^{2,3}, Erwan Kerrien¹

- ¹ Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
- ² CHRU-Nancy, Department of Diagnostic and Therapeutic Interventional Neuroradiology, Nancy, France
- ³ Université de Lorraine, Inserm, IADI, F-54000 Nancy, France

Context & Contributions

• Context

- Challenging clinical problem: unruptured brain aneurysm detection and assessment from TOF-MRA data.
- Need for automated and appropriate visualization of candidate aneurysms.

Contributions

- End-to-end CNN for pose estimation and object detection tasks.
- Efficient data sampling strategy.
- Evaluation metrics tailored to the problem.

Experimental Study

- Evaluation: 5-fold cross-validation
 - Positive detection (TP):
 - Spheres (GT vs Prediction): IoU > 10%.
- Pose Estimation: no SOTA to compare with
 - Datasets: In-house and CHUV.
 - Localization: Euclidian distance to GT center (mm)
 - **Orientation:** Cosine similarity to GT orientation (acos)

Introduction

• Brain aneurysms:

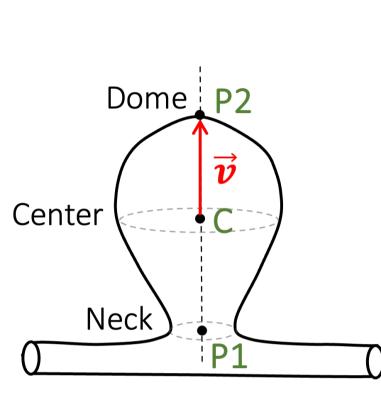
- Local dilatations of cerebral blood vessels.
- Mostly ball-shaped objects.
- **Objectives:** Reformatted plane \rightarrow Automated view
 - Analyze connection to parent vessel.
 - Similar to the DSA projection used for coiling.
- Challenges:
 - Data scarcity:
 - Small and private datasets.
 - 0 to 4 aneurysms per patient.
 - **Class imbalance:** very small structures ($\approx 10/1M$ voxels).
 - Data annotation: difficult and time-consuming.

	Localization (mm)		Orientation (°)	
	Median	Range	Median	Range
In-house	0.49	0.05 - 1.74	11.91	0.21 - 68.35
CHUV [1]	0.48	0.05 - 1.43	12.27	1.05 - 68.30

• **Object Detection:** Spheres (*C*, radius)

- **Dataset**: *CHUV* [1].
- Compared with two fully automated SOTA baselines.

	Average Precision (%)	Sensitivity (%)	FP/case
nnDetection [3]	73.68 ± 6.38	84.76 ± 4.72	0.67 ± 0.12
nnUNet [4]	72.46 ± 4.74	71.95 ± 9.11	0.13 ± 0.06
Ours	76.60 ± 5.24	82.93 ± 5.92	0.44 ± 0.04


Method

• Datasets: 402 subjects

TOF-MRA# Subjects# AneurysmsMean size (mm)

Qualitative Results

GT annotation (P1, P2) vs Predictions (Pred1, Pred2). Pred{1,2} = $C \pm \vec{v}$

In-house	132	206	3.97 ± 2.32
CHUV [1] (public)	270	164	3.74 ± 2.17

Data Strategy

• Data annotation:

- Approximate and fast: 2 points (P1, P2) \rightarrow Sphere.

Small patch-based approach:

- 96×96×96 voxels (38.4×38.4×38.4 mm).
- Non-intersecting patches \rightarrow independent.

Data selection and synthesis:

- Negative patches (aneurysm-free): Selection
 - 40 patches per patient, randomly selected.
 - Mostly centered on blood vessels.
- Positive patches (with aneurysm): Synthesis
 - 50 duplicates and deformation by random distortion.
- Neural Network Architecture
 - End-to-end 3D anchor-free CNN, inspired by 2D YOLO [2].
 - Pose Estimation:
 - Localization: Center coordinates $C = (C_x, C_y, C_z) = (P1+P2)/2$. - Orientation: Size and orientation $\vec{v} = (V_x, V_y, V_z) = (P2 - P1)/2$.

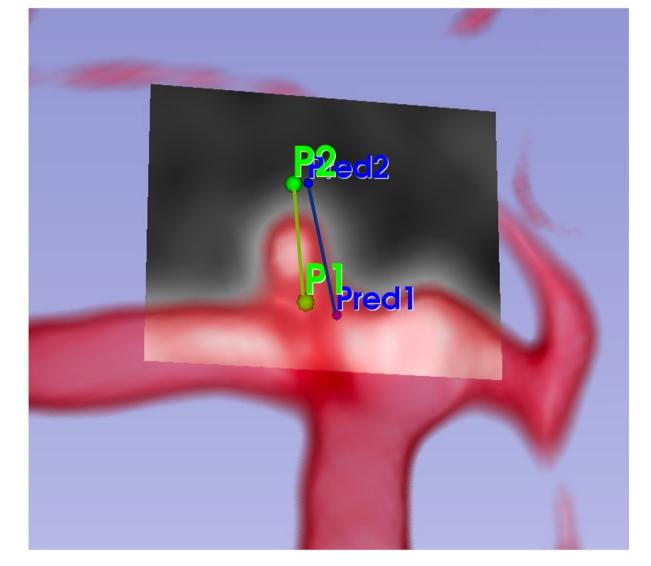


Figure 2: Detection of a very small 1.97 mm aneurysm (Error: 0.82 mm; 8.20°).

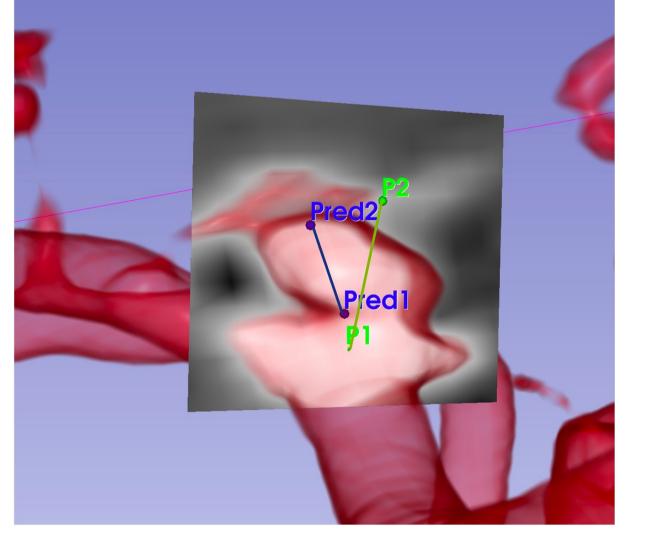


Figure 3: Large orientation error of 41.54° for a complex-shaped 3.52 mm aneurysm.

Conclusion & Perspectives

Conclusion

- The pose estimation architecture has shown promising results.
- Can also be applied to classical object detection tasks.
- Orientation errors are primarily due to annotation uncertainty for small and complex-shaped aneurysms.

Perspectives

- Object Detection:
 - **Spheres**: center *C*, radius = $|\vec{v}|$.

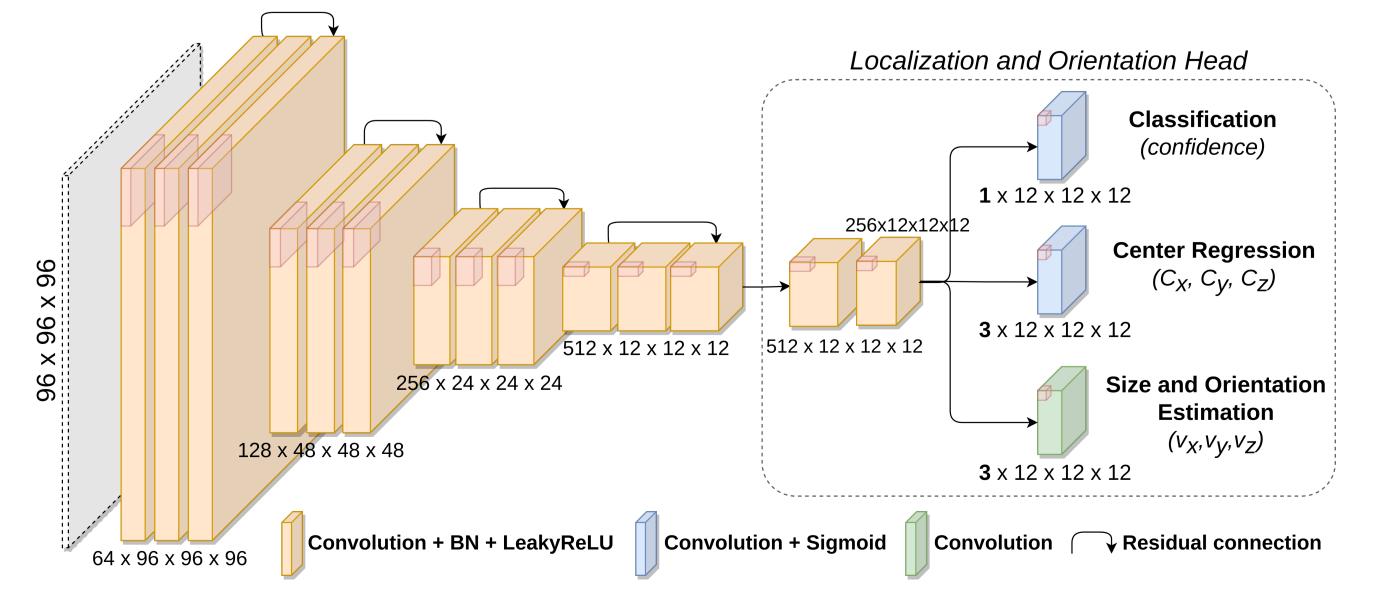


Figure 1: Our proposed aneurysm pose estimation architecture.

- Develop a clinical definition for aneurysm orientation.
- Conduct evaluations in clinical settings.
- Code and annotations are publicly available at:

https://gitlab.inria.fr/yassis/DeepAnePose.

References

- 1. Di Noto et al. Towards automated brain aneurysm detection in TOF-MRA: open data, weak labels, and anatomical knowledge, Neuroinformatics, 2022.
- 2. Redmon et al. Yolov3: An incremental improvement, arxiv preprint, 2018.
- 3. Baumgartner et al. nnDetection: a self-configuring method for medical object detection. MICCAI, 2021.
- 4. Isensee et al. nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 2021.